Grade: X

Date: 01-12-2023

Max. Marks:80 Duration: 3Hrs

Answers

1. Option B

The distance between (x_1, y_1) and (x_2, y_2) is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Therefore, the distance between the points (2, -2) and (-1, x)

$$= \sqrt{(-1-2)^2 + (x-(-2))^2}$$

$$\Rightarrow 5 = \sqrt{(-3)^2 + (x+2)^2}$$

Squaring both sides, we get

$$\Rightarrow (5)^2 = \left(\sqrt{9 + (x+2)^2}\right)^2$$

$$\Rightarrow 25 = 9 + (x+2)^2$$

$$\Rightarrow 25 = 9 + x^2 + 4 + 4x$$

$$\Rightarrow x^2 + 4x + 13 - 25 = 0$$

$$\Rightarrow x^2 + 4x - 12 = 0$$

$$\Rightarrow x^2 + 6x - 2x - 12 = 0$$

$$\Rightarrow x(x+6) - 2(x+6) = 0$$

$$\Rightarrow (x-2)(x+6) = 0$$

$$\Rightarrow x = 2, -6$$

Hence, the values of x are 2 and -6.

2. Option C

Solution

It is given that, $a = x^3y^2$ and $b = xy^3$, where x, y are prime numbers.

LCM (a, b) = LCM (x^3y^2, xy^3)

= The highest of indices of x and y

$$= x^3y^3$$

Hence, LCM (a, b) is x^3y^3 .

- 3. Option b
- 4. Option a
- 5. Option c

- 6. Option a
- 7. Option a
- 8. Option b
- 9. Option a
- 10. Option a
- Option b 11.
- **12.** Option c **16**
- 13. Option a
- 14. Option d
- 15. Option c
- 16. Option a
- 17. Option b
- Option b 18.
- **19**. Option d
- 20. **Option FF**
- 21.

Given $\sqrt{3}$ is irrational number

Let $2 + \sqrt{3}$ is rational number.

then
$$2 + \sqrt{3} = \frac{p}{q}$$

$$\sqrt{3} = \frac{p - 2q}{q}$$

$$\sqrt{3} = \frac{p - 2q}{q}$$

Since $\sqrt{3}$ is irrational number but $\frac{p-2q}{\alpha}$ is rational it mean

irrational = rational

which contradict,

- .. our assumption is wrong and
- $2 + \sqrt{3}$ is irrational number.

Let the angle of elevation of the Sun is θ .

Given, height of pole = h

Now, in ΔABC,

$$\tan \theta = \frac{AC}{BC} = \frac{h}{\sqrt{3}h}$$

$$\Rightarrow$$
 tan $\theta = \frac{1}{\sqrt{3}} = \tan 30^{\circ} \Rightarrow \theta = 30^{\circ}$

Hence, the angle of elevation of the Sun is 30°.

OR

As the height of the Observer is 1.5

$$AE = 22 - 1.5 = 20.5$$

In $\triangle AED$

$$\tan \theta = \frac{AE}{ED} = \frac{20.5}{20.5} = 1 \Rightarrow \theta = 45^{\circ}$$

Therefore, answer is 45°

When three coins are tossed together, the total number of outcomes = 8 i.e., (HHH, HHT, HTH, THH, THH, THT, TTT)

23.

when 3 coins are torsed together, the out compo will be

SHHH, HHT, HTH, THH, HTT, THT, TTH, TTT?

P P Cenactly 2 Heads] =
$$\frac{9}{8}$$

b) P Cattered 2 Heads] = $\frac{4}{8}$ = $\frac{1}{2}$

c) P Cat most 2 Heads] = $\frac{7}{8}$

d) P Cenactly 1 Tail = $\frac{3}{8}$

- a) 3/8
- b) 4/8=1/2
- c) %
- d) 3/8

25.

26.

1)
$$t \cdot T \cdot (s \text{ in } A + \text{ Coree } A)^{\frac{1}{2}} (\text{CESM} + \text{See } A)^{\frac{1}{2}} = 7 + \tan^{2} A + \cot^{2} A$$

Lits = $(s \text{ in } A + \text{ Coree } A)^{\frac{1}{2}} (\text{ CESM} + \text{ See } A)^{\frac{1}{2}}$
= $s \text{ in }^{2} A + \text{ Coree }^{2} A + 2 \text{ Sim } A \cdot \text{ Coree } A + \text{ Cesh}^{2} A + 2 \text{ Cesh}^{2} A + 2 \text{ Cesh}^{2} A + 2 \text{ Sim } A \cdot \text{ Gene } A + 2 \text{ Sim } A \cdot \text{ Cesh}^{2} A + 2 \text{ Cesh}^{2}$

Leto A C BO be the minor . 400 = 60, radice of the sector, rais con med of rector on CB = 7720 "= "17.75 cm d d and and x = 180-10 = 120 = 10 =) DOAR is equilateral A. Area of DOAR = \(\frac{3}{4} \times a^2 = 13 X15 XIF = 1.73 XISXIS mea of minor segment : mearof minor Sector - Tree of 0048 = 117.75 (m2 - 97.2125 cm2 meed major regment = Ty2 meadminor segment = 3.14x 15x U - 20.4375 = "706.5" - 20.4325 Toles there a= 12i, r= 25cm

Let
$$R(4,0)$$
 as $(6)^{2}$

Distance of $QR = \int (4-6)^{2} + (6-1)^{2}$
 $= \int (4-5)^{2} + (1-2)^{2} - \sqrt{(4-5)^{2}} + \sqrt{(4-5)^{2$

d=4 sekm he the normal spead of the frown be x' lem the Time taken to trongly solem & = d = 48 If the speed to x kn/h less it become x-9, pu me question, to = 480. AT puthe question, ta = 61+3 480 = 480 +3 450 = 450 = 3 494 [- (N-8)] = 3 48e [2-x+2]= 3 The same of more 712- PX - 1280 =0 12- 40x + 32x -1280 =0 x (4-40) + 32(x-40)= (n-40) (x+32) =0 En who we promise n = 40, -32 = We negled x=-32, as speed cas'l be negative .. x = 40 . Speed of the train = 40 km/h

31.

Take a point a clear town p on the tern gent xy. clearly

To the treguine of = 0 R= Y

Now 00=0R+RQ

To Similarly of s is any other point on xy. Theo

OS > 0P by the same argument

The happens for every point on xy, other than

the point p

But of all the point on xy, perpendicular is

the short distance, from a point to the line xy

Tangent at any pand is 1 + 6 the radium.

```
Required amount = Red500, n=12
32)
     The terms are, 100, 120, 140, "
         Sn = 0[2a+(n-1)d]
            × 12[2(100)+(12-1) a]
            = 1 1 200 + 11 (20)
            = 6 [ 200 + 220]
            = 6 x 420
             = 2520
    She will have Rs 25de after 12 weeks
     40, She can send her daughter la school.
            OR
    Let the first 3 tems be aid, 9, 9+d
     a-d+a+a+d=33
     (a-d)(a+d) = a+29
       a2_d2 = == 11+29
      u2-d2 = 40
        121 - d2 = 40
        d= ±9
if d=9, when a=14, a-d=11-9=2
             9+ 0 = 11+9=20
    .. The terms are 2, 11920
   If a=11, al =- 9
     Then a-d= 11-(-9)=20
          a = 211
          a+d= 11+(-9)=2 10 HAG
       . The terms are 2,11, 20 OR 20, 11, 2
```

33. Proof of Basic Proportionality theorem

Here, it is given that Median = 28.5 and n = $\sum f_i$ = 60 Cummulative frequency table for the following data is given.

Here
$$n = 60 \Rightarrow \frac{n}{2} = 30$$

Since, median is 28.5, median class is 20 - 30

Hence,
$$l = 20$$
, $h = 10$, $f = 20$, $c.f. = 5 + x$

Therefore, Median =
$$1 + (\frac{\frac{n}{2} - cf}{f})h$$

$$28.5 = 20 + \left(\frac{30 - 5 - x}{20}\right)10$$

$$\Rightarrow 28.5 = 20 + \frac{25 - x}{2}$$

$$\Rightarrow 8.5 \times 2 = 25 - x$$

$$\Rightarrow x = 8$$

Also,
$$45 + x + y = 60$$

$$\Rightarrow$$
 y = 60 - 45 - x = 15 - 8 = 7.

Hence,
$$x = 8$$
, $y = 7$

Class - interval	Frequency	Cumulative frequency
0 – 10	5	5
10 – 20	x	5 + <i>x</i>
20 – 30	20	25 + x
30 – 40	15	40 + x
40 – 50	У	40 + x + y
50 – 60	5	45 + x + y
Total	n = 60	

OR

nber of Wickets	Number of Bowlers (f_i)	Class Mark (x _i)	$f_i x_i$
20 - 60	7	$\frac{20 + 60}{2} = 40$	7 × 40 = 280
60 – 100	5	$\frac{60 + 100}{2} = 80$	5 × 80 = 400
100 – 150	16	$\frac{100 + 150}{2} = 125$	16 × 125 = 2000
150 – 250	12	$\frac{150 + 250}{2} = 200$	12 × 200 = 2400
250 - 350	2	$\frac{250 + 350}{2} = 300$	2 × 300 = 600
350 - 450	3	$\frac{350 + 450}{2} = 400$	3 × 400 = 1200
	$\sum f_i = 45$		$\sum f_i x_i = 6880$

This problem can be solved using direct method as class interval is different.

We know tha,

$$Mean(\overline{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

=152.89

1. To find the angle of elevation,
$$\tan \theta = \frac{\text{height of the tower}}{\text{distance from the tower}^42} = 1$$

$$\sqrt{3} = \frac{42}{\text{distance}}$$

$$\text{distance} = \frac{42}{\sqrt{3}}$$

$$\text{distance} = 24.64 \text{ m}$$

$$\theta = \tan^{-1} (1) = 45^\circ$$

- 2. To find the distance, $\tan 60^\circ = \frac{\text{height of the tower}}{\text{distance}} \frac{42}{\text{distance}}$ $\sqrt{3} = \frac{42}{\text{distance}}$ $\text{distance} = \frac{42}{\sqrt{3}}$ distance = 24.64 m
- 3. To find the height of the verticle tower, tan $60^{\circ} = \frac{\text{height of the tower}}{\text{distance}}$ $\sqrt{3} = \frac{\text{height of the tower}}{20}$

height of the tower = $20\sqrt{3}$

4. To find the angle of elevation of the sun, $\tan \theta = \frac{\text{height of the tower}}{\text{distance from the tower}}$ = $\frac{1}{1}$ (since the ratios are in 1:1) $\theta = \tan^{-1}(1) = 45^{\circ}$

37. Volume of cylindrical container= π R2

 $H=\pi \times 62 \times 15 = 540 \pi \text{ cm}^3$

Let radius of base of conical portion be 'r', then diameter=2r and height=2×2r=4r

10×volume of each cone=volume of container

 $\Rightarrow 10[3\pi r2h + 32\pi r3] = 540\pi \Rightarrow 10 \times 31\pi[r2 \times 4r + 2r3] = 540\pi$

⇒6r3=162⇒

r3=27⇒r=3

27=3cm

∴Diameter =2r=2×3=6cm

Given that

First row has 30 seats, and each succeeding row has 10 seats more than the previous one

So, this is an AP with

First term =
$$a = 30$$

Common difference = d = 10

We need to find how many seats will be there in the $10^{\rm th}$ row i.e. We need to find a_{10}

We know that

$$a_n = a + (n - 1)d$$

Putting n = 10, a = 30, d = 10

$$a_{10} = 30 + (10 - 1) \times 10$$

$$= 30 + 9 \times 10$$

$$= 30 + 90$$

Thus, there are 120 seats in the 10th row